Estimation of unknown function of a class of integral inequalities and applications in fractional integral equations
نویسنده
چکیده
It is well known that differential equations, integral equations and integral-differential equations have gained considerable importance and attention due to their applications in many engineering and scientific disciplines as the mathematical modeling of systems and processes in the fields of physical, mechanics, chemistry, aerodynamics, and the electrodynamics of complex mediums, etc. Gronwall-Bellman inequality is an important tool in the study of existence, uniqueness, boundedness, and other qualitative properties of solutions of differential equations and integral equation. In this paper, we discuss we establish a class of retarded iterated integral inequalities, which includes a nonconstant term outside the integrals. By integral inequality technique, the upper bound of the embedded unknown function is estimated explicitly. The derived result can be applied in the study of solutions of fractional integral equations.
منابع مشابه
New inequalities for a class of differentiable functions
In this paper, we use the Riemann-Liouville fractionalintegrals to establish some new integral inequalities related toChebyshev's functional in the case of two differentiable functions.
متن کاملSome new Ostrowski type fractional integral inequalities for generalized $(r;g,s,m,varphi)$-preinvex functions via Caputo $k$-fractional derivatives
In the present paper, the notion of generalized $(r;g,s,m,varphi)$-preinvex function is applied to establish some new generalizations of Ostrowski type integral inequalities via Caputo $k$-fractional derivatives. At the end, some applications to special means are given.
متن کاملA generalized form of the Hermite-Hadamard-Fejer type inequalities involving fractional integral for co-ordinated convex functions
Recently, a general class of the Hermit--Hadamard-Fejer inequality on convex functions is studied in [H. Budak, March 2019, 74:29, textit{Results in Mathematics}]. In this paper, we establish a generalization of Hermit--Hadamard--Fejer inequality for fractional integral based on co-ordinated convex functions.Our results generalize and improve several inequalities obtained in earlier studies.
متن کاملSome new results using Hadamard fractional integral
Fractional calculus is the field of mathematical analysis which deals with the investigation and applications of integrals and derivatives of arbitrary order. The purpose of this work is to use Hadamard fractional integral to establish some new integral inequalities of Gruss type by using one or two parameters which ensues four main results . Furthermore, other integral inequalities of reverse ...
متن کاملEstimation of unknown function of a class of integral inequalities with pth power
Fractional differential equations and fractional integral equations have gained considerable importance and attention due to their applications in many engineering and scientific disciplines. Gronwall-Bellman inequalities are important tools in the study of existence, uniqueness, boundedness, stability and other qualitative properties of solutions of Fractional differential equations and fracti...
متن کاملNumerical solution of Voltra algebraic integral equations by Taylor expansion method
Algebraic integral equations is a special category of Volterra integral equations system, that has many applications in physics and engineering. The principal aim of this paper is to serve the numerical solution of an integral algebraic equation by using the Taylor expansion method. In this method, using the Taylor expansion of the unknown function, the algebraic integral equation system becom...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Applied Mathematics and Computation
دوره 268 شماره
صفحات -
تاریخ انتشار 2015